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In this paper a family of trigonometrically-fitted symmetric ten-step methods for the ef-
ficient solution of the Schrödinger equation and related problems is presented. Construction
and stability analysis of the new methods is described. Numerical results obtained for the res-
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methods when they are compared with known methods in the literature.
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1. Introduction

The investigation of the integration of second order differential equations of the
form

y′′(x) = f(x, y), y(x0) = y0, y′(x0) = y′0, (1)

where the function f is independent of the first derivative of y, is presented in this paper.
This type of equations are very important (especially when their solution has oscillatory
behavior) in many areas of quantum mechanics, quantum chemistry, physical chem-
istry and chemical physics, celestial mechanics, astrophysics, astronomy, electronics
(see [1,2]).

For the approximate solution of the above differential equations the most important
properties are the following: (i) algebraic order of the method, (ii) interval of periodic-
ity of the method, (iii) minimization of the phase-lag of the method, (iv) symmetry of
the method, (v) exponential fitting and in special cases (vi) adaptive properties such as
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Bessel and Neumann fitting. For more details for one the above one can see [3–5]. The
development of methods with these properties is an open problem.

In [5] Simos has divided the methods for the solution of (1) into two categories:

(1) methods with constant coefficients and

(2) methods with coefficients dependent on the frequency of the problem.

For the first category of methods important properties are the properties (i)–(iv)
mentioned above while for the second category of methods important properties are (i),
(ii) and (iv) and (v) or (vi) mentioned above.

In the last two decades there has been much research for the numerical so-
lution of (1) (see [6–12] and references therein, [13–42]. For a complete reference
about the methods developed for the solution of (1) see [3–5,43] and references
therein. We note that the most finite difference methods developed in the literature
for the numerical solution of (1) belong to the class of multistep and hybrid tech-
niques.

As we have mentioned above a useful approach for developing powerful methods
for the approximate solution of second order initial value problems with oscillating or
periodic solution is to use exponential fitting, first introduced by Lyche [44], especially
in cases of the Schrödinger type equations. Raptis and Allison [19] have produced a Nu-
merov type exponentially fitted method. The numerical results obtained in [19] indicate
that these fitted methods are much more efficient than Numerov’s method for the solution
of the Schrödinger type equations. Generally for the Schrödinger equation and related
problems the methods with coefficients dependent on the frequency of the problem are
much more efficient than the methods with constant coefficients.

A popular family of multistep methods for the solution of (1) is the family of
Störmer–Cowell methods. These methods have been widely used for long-term inte-
grations of planetary orbits (see Quinlan and Tremaine [45] and references therein).
A characteristic of these methods is the orbital instability when the number of steps ex-
ceeds 2. This characteristic exists since the methods are dissipative, i.e., non-symmetric
and as consequence they have empty interval of periodicity. In order to solve the problem
of orbital instability, Lambert and Watson [46] have constructed the symmetric multistep
methods and the property of the interval of periodicity. Lambert and Watson have proved
that the symmetric methods have nonvanishing interval of periodicity (which is the inter-
val of guaranteed periodic solution and is determined by the application of the symmetric
multistep method to the test equation y′′(t) = −q2y(t); if q2h2 ∈ (0, T 2), where h is the
steplength of the integration, then this interval is called interval of periodicity). Quin-
lan and Tremaine [45] have constructed high order symmetric multistep methods based
on the work of Lambert and Watson. We note here that the linear symmetric multistep
methods developed by Lambert and Watson [46] and Quinlan and Tremaine [45] are
much simpler than the hybrid (Runge–Kutta type) methods. For the above reasons of
simplicity and accuracy in long-time integration of periodic initial value problems we
give attention to this family of methods.
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The purpose of this paper is to construct a family of trigonometrically-fitted linear
symmetric ten-step methods for the efficient solution of the Schrödinger equation and
related problems.

The paper is constucted as follows. In section 2 a family of trigonometrically-
fitted simple linear multistep methodsare developed. These methods are based on a
linear classical (with constant coefficients) ten-step method developed by Jenkins [47].
In section 3 a stability analysis for the methods developed in section 2 is presented. In
section 4 numerical illustrations are presented. Finally, in section 5 concluding remarks
are presented.

2. Family of trigonometrically-fitted eighth algebraic order symmetric methods

2.1. First trigonometrically-fitted method of the family

We consider the symmetric multistep explicit method:

yn+9/2 − yn+7/2 − yn−7/2 + yn−9/2

= h2
(
c0y
′′
n+7/2 + c1y

′′
n+5/2 + c2y
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′′
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′′
n−7/2

)
. (2)

In order the above method to be exact for any linear combination of the functions
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1, x, x2, x3, x4, x5, cos(±wx), sin(±wx), x cos(±wx), x sin(±wx)}, (3)
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The solution of the above system of equations is given in appendix A. For small
values of v the given formulae are subject to heavy cancelations. In this case the Taylor
series expansions given in appendix B must be used.

The local truncation error of the above method is given by:

LTE(h) = h10

64800

(
8183y(10)

n + 16366v2y(8)n + 8183v4y(6)n
)
. (5)

2.2. Second trigonometrically-fitted method of the family

If we require the above method to be exact for any linear combination of the func-
tions:

{
1, x, x2, cos(±wx), sin(±wx), x cos(±wx), x sin(±wx),
x2 cos(±wx), x2 sin(±wx)}, (6)

the following system of equations must hold:

4 = c0 + c2 + c3 + c1,
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The solution of the above system of equations is given in appendix C. For small
values of v the given formulae are subject to heavy cancelations. In this case the Taylor
series expansions given in appendix D must be used.

The local truncation error of the above method is given by

LTE(h) = h10

64800

(
8183y(10)

n + 24549v2y(8)n + 24549v4y(6)n + 8183v6y(4)n
)
. (8)

2.3. Third trigonometrically-fitted method of the family

If we require the above method to be exact for any linear combination of the func-
tions:

{
1, x, cos(±wx), sin(±wx), x cos(±wx), x sin(±wx), x2 cos(±wx),

x2 sin(±wx), x3 cos(±wx), x3 sin(±wx)}, (9)

the following system of equations must hold:
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The solution of the above system of equations is given in appendix E. For small
values of v the given formulae are subject to heavy cancelations. In this case the Taylor
series expansions given in appendix F must be used.

The local truncation error of the above method is given by

LTE(h) = h10

64800

(
32732v2y(8)n +32732v6y(4)n +49098v4y(6)n +8183y(10)

n +8183v8y(2)n
)

(11)
It can be seen that when v→ 0 the above methods become the classical symmetric

eighth algebraic order explicit method developed by Jenkins [47].
We note that if we substitute w with iφ in the above formulae, the coefficients of

the exponentially-fitted eighth algebraic order symmetric methods are obtained.
Following similar procedures methods of the above type for multifrequency cases

can be produced. This will be a subject of another paper.

3. Stability analysis

In the last decade there has been a great interest in the numerical solution of special
second order periodic initial-value problems (see [3,4,48,49] and references therein)

y′′ = f (x, y), y(x0) = y0, y′(x0) = y′0. (12)
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In order to investigate the periodic stability properties of numerical methods for
solving the initial-value problem (12) Lambert and Watson [46] introduce the scalar test
equation

y′′ = −q2y (13)

and the interval of periodicity.
Based on the theory developed in [46], when a symmetric multistep method

k∑
j=0

ajyn+j = h2
k∑
j=0

βjfn+j (14)

is applied to the scalar test equation (13), a difference equation of the form

k∑
i=0

(
ai +H 2 βi

)
yn+i = 0 (15)

is obtained, where H = qh, h is the step length and yn is the computed approximation
to y(nh), n = 0, 1, 2, . . . .

The general solution of the above difference equation is given by

yn =
k∑
j=1

AjP
n
j , (16)

where Pj , j = 1(1)k are the distinct roots of the polynomial

P
(
P ;H 2

) = ρ(P )+H 2 σ (P ), (17)

where ρ and σ are polynomials given by

ρ(p) =
k∑
i=0

aip
i, σ (p) =

k∑
i=0

βip
i. (18)

We note here that the roots of the polynomial (17) are perturbations of the roots
of ρ. We denote as P1 and P2 the perturbations of the principal roots of ρ.

Based on Lambert and Watson [46] when a symmetric multistep method is applied
to the scalar test equation y′′ = −q2y, a difference equation (15) is obtained. The char-
acteristic equation associated with (15) is given by (17). The roots of the characteristic
polynomial (17) are denoted as Pi , i = 1(1)k.

We have the following definitions.

Definition 1. Following Lambert and Watson [46] we say that the numerical method (15)
has an interval of periodicity(0,H 2

0 ), if for all H 2 ∈ (0,H 2
0 ), Pi , i = 1(1)k, satisfy:

|P1| = |P2| = 1, |Pj | � 1, j = 3(1)k. (19)

Definition 2 [46].The method (15) is P -stableif its interval of periodicity is (0,∞).
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Figure 1. Stability region for the trigonometrically-fitted methods developed in the paper. (a) new method I,
(b) new method II, (c) new method III.

For the method developed in this paper we have that the polynomials ρ and σ are
given by (18) with k = 7 and

a0 = a9 = 1, a1 = a8 = −1, a2 = a3 = a4 = a5 = a6 = a7 = 0 (20)

and the coefficients β0 = β9 = 0, β1 = β8 = c0, β2 = β7 = c1, β3 = β6 = c2,
β4 = β5 = c3 be given by (28) for the first trigonometrically-fitted method, by (30) for
the second trigonometrically-fitted method and by (32) for the third trigonometrically-
fitted method.

In figure 1 we present the stability polynomials for the three new developed meth-
ods (we note here that we present the first trigonometrically-fitted method as new
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method I, the second trigonometrically-fitted method as new method II and the third
trigonometrically-fitted method as new method III).

Based on the above theory and on the coefficients given above we find that the
interval of periodicity of the new method I is equal to (0, 9.77), for the second new
method II is equal to (0, 7.22) and for the third new method III is equal to (0, 3.26),
i.e., is greater than the interval of periodicity of the classical method which is equal
to (0, 0.74).

4. Numerical illustrations

In this section we apply the new explicit proposed methods to the resonance
problem of the radial Schrödinger equation. We note here that similar results have
been obtained for the coupled differential equations arising from the Schrödinger equa-
tion.

4.1. The Schrödinger equation

Let us consider the numerical solution of the radial Schrödinger equation

y′′(x) =
(
l(l + 1)

x2
+ V (x)− k2

)
y(x). (21)

In (21) the function W(x) = l(l + 1)/x2 + V (x) denotes the effective potential, which
satisfies W(x) → 0 as x → ∞, k2 is a real number denoting the energy, l is a given
integer, related to the angular momentum and V is a given function representing the
potential. The boundary conditions are:

y(0) = 0 (22)

and a second boundary condition, for large values of x, determined by physical consid-
erations. It is known that in the asymptotic region the equation (21) effectively reduces
to

y′′(x)+
(
k2 − l(l + 1)

x2

)
y(x) = 0, (23)

for x greater than some value R, where R defines the asymptotic region.
The above equation has linearly independent solutions kxjl(kx) and kxnl(kx),

where jl(kx), nl(kx) are spherical Bessel and Neumann functions, respectively. Thus
the solution of equation (21) has the asymptotic form (when x →∞)

y(x) ∼ Akxjl(kx)− Bnl(kx) ∼ D
(

sin

(
kx − πl

2

)
+ tan δl cos

(
kx − πl

2

))
, (24)
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where δl is the phase shiftwhich may be calculated from the formula

tan δl = y(xi)S(xi+1)− y(xi+1)S(xi)

y(xi+1)C(xi)− y(xi)C(xi+1)
(25)

for xi and xi+1 distinct points on the asymptotic region (for which we have that xi+1 is
the right-hand end point of the interval of integration and xi = xi+1−h, h is the stepsize)
with S(x) = kxjl(kx) and C(x) = kxnl(kx).

We evaluate the phase shift δl from the above relation at xi in the asymptotic re-
gion. For the illustration of the accuracy of the new proposed method we consider the
numerical integration of the one-dimensional Schrödinger equation (21) with l = 0 in
the case where V (x) is the Woods–Saxon potential:

V (x) = VW(x) = u0

(1+ z) −
u0z

a(1+ z)2 (26)

with z = exp((x − R0)/a), u0 = −50, a = 0.6 and R0 = 7.0.
For positive energies one has the so-called resonance problem. This problem

consists either of finding the phase shift δ(E) = δl or finding those E ∈ [1, 1000],
at which δ equals π/2. We actually solve the latter problem, using the technique
fully described in [50], when the positive eigenenergies lie under the potential bar-
rier.

The boundary conditions for this problem are:

y(0)= 0,

y(x)∼ cos
(√
Ex
)

for large x.

The domain of numerical integration is [0, 15].
For comparison purposes in our numerical illustration we use:

(1) Explicit version of Numerov’s method produced by Chawla [51] (which is in-
dicated as method [a]). We note here that this method has larger interval of pe-
riodicity (interval of periodicity equal to (0, 12)) than the classical Numerov’s
method (interval of periodicity equal to (0, 6)).

(2) Sixth algebraic order explicit method with phase-lag order eight of Chawla [52]
(which is indicated as method [b]).

(3) The linear classical (with constant coefficients) multistep method of algebraic
order eight developed by Jenkins [47](which is indicated as method [c]).

(4) Exponentially-fitted eighth algebraic order linear ten-step method produced in
this paper (coefficients given by (28) (which is indicated as method [d]).

(5) Exponentially-fitted eighth algebraic order linear ten-step method produced in
this paper (coefficients given by (30) (which is indicated as method [e]).

(6) Exponentially-fitted eighth algebraic order linear ten-step method produced in
this paper (coefficients given by (32) (which is indicated as method [f]).
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Figure 2. Error versus number of function evaluations =NFE·100 for the eigenvalue E0 = 53.588872. The
non-existance of a value for a method indicates that error is positive. method [a]; method [b];

method [c]; method [d]; method [e]; method [f].

The numerical results obtained by these six methods, with the same number of
function evaluations (which are equal to NFE · 100, where NFE is the number pre-
sented in the figure) were compared with the analytic solution of the Woods–Saxon
potential resonance problem, rounded to six decimal places. Figure 2 shows the errors
Error = log10 |Ecalculated − Eanalytical| for the lowest eigenenergy E0 = 53.588872. Fig-
ure 3 shows the errors Error = log10 |Ecalculated − Eanalytical| for the highest eigenenergy
E3 = 989.701916.

Since the methods used are of multistep type, in order to determine the appropriate
initial conditions an eighth algebraic order Runge–Kutta–Nyström method developed by
Dormand et al. [53] is used.

5. Remarks and conclusion

Based on the above numerical results we present the following remarks.
For low and high energies the second and third trigonometrically-fitted methods

developed above are much more efficient than all the other methods used for comparison
purposes.
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Figure 3. Error versus number of function evaluations = NFE · 100 for the eigenvalue E3 = 989.701916.
The non-existance of a value for a method indicates that error is positive. method [a];

method [b]; method [c]; method [d]; method [e]; method [f].

For low energies the classical linear ten-step symmetric method and for number of
function evaluations grater than 400, has approximately similar behavior with the first
and second trigonometrically-fitted methods developed above.

For high energies the method [a] does not converge.
All computations were carried out on a IBM PC-AT compatible 80486 using dou-

ble precision arithmetic with 16 significant digits accuracy (IEEE standard).

Appendix A.

c0 =
(−6v + 24v3 cos(v)+ 18v cos(4v)− 6v cos(3v)− 12v cos(2v)+ 12v cos(v)

+ 31v3 cos(2v)− 6v cos(5v)− 7v3 + 6 sin(5v)− 12 sin(4v)+ 6 sin(3v)
)/

(−15v3 + 12v3 cos(v)− 12v3 cos(3v)+ 12v3 cos(2v)+ 3v3 cos(4v)
)
,

c1 =
(
6v − 62v3 cos(3v)− 6 sin(6v)− 58v3 cos(v)− 42v cos(4v)+ 6v cos(3v)

+ 33v cos(2v)− 12v cos(v)− 67v3 cos(2v)+ 6v cos(5v)+ 3v cos(6v)
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− 53v3 − 6 sin(5v)+ 24 sin(4v)− 6 sin(2v)− 6 sin(3v)
)/

(−15v3 + 12v3 cos(v)− 12v3 cos(3v)+ 12v3 cos(2v)+ 3v3 cos(4v)
)
, (27)

c2 =
(
18v + 62v3 cos(3v)+ 18 sin(6v)+ 31v3 cos(4v)+ 154v3 cos(v)

+ 18v cos(4v)+ 18v cos(3v)− 27v cos(2v)− 36v cos(v)+ 139v3 cos(2v)

+ 18v cos(5v)− 9v cos(6v)+ 46v3 − 18 sin(5v)+ 18 sin(2v)− 18 sin(3v)
)/

(−15v3 + 12v3 cos(v)− 12v3 cos(3v)+ 12v3 cos(2v)+ 3v3 cos(4v)
)
,

c3 =
(−18v − 48v3 cos(3v)− 12 sin(6v)− 19v3 cos(4v)− 72v3 cos(v)+ 6v cos(4v)

− 18v cos(3v)+ 6v cos(2v)+ 36v cos(v)− 55v3 cos(2v)− 18v cos(5v)

+ 6v cos(6v)− 46v3 + 18 sin(5v)− 12 sin(4v)− 12 sin(2v)+ 18 sin(3v)
)/

(−15v3 + 12v3 cos(v)− 12v3 cos(3v)+ 12v3 cos(2v)+ 3v3 cos(4v)
)
.

where v = wh.

Appendix B.

c0 = 22081

15120
− 8183

64800
v2 + 602003

119750400
v4 − 2612693

29719872000
v6 − 1097471

3923023104000
v8

− 388206337

2000741783040000
v10 − 2296132327

109168679854080000
v12 + · · · ,

c1 =− 7337

15120
+ 8183

12960
v2 − 10571107

119750400
v4 + 477221839

65383718400
v6 − 28957817

80061696000
v8

+ 368764213

30780642816000
v10 − 365875468709

1419192838103040000
v12 + · · · ,

(28)
c2 = 339

112
− 8183

7200
v2 + 1040789

4435200
v4 − 258736661

12108096000
v6 + 18948373

17435658240
v8

− 859009673

24700515840000
v10 + 425574909211

473064279367680000
v12 + · · · ,

c3 =− 29

15120
+ 8183

12960
v2 − 18132199

119750400
v4 + 185140811

13076743680
v6 − 2843353421

3923023104000
v8

+ 9199663201

400148356608000
v10 − 293666512891

473064279367680000
v12 + · · · .

Appendix C.

c0=
(−3 cos(2v)− 6v2 + 3 cos(6v)+ 22v sin(3v)+ 3v2 cos(2v)− 18v2 cos(3v)

+ 6v2 cos(4v)+ 12v2 cos(v)− 16v4 cos(v)+ 6 cos(3v)− 4v4 cos(2v)



T.E. Simos / A family of trigonometrically-fitted symmetric methods 53

− 11v sin(2v)+ 6v2 cos(5v)− 3v2 cos(6v)− 12v4 − 10v sin(5v)

+ 5v sin(6v)− 6v sin(4v)− 6 cos(5v)
)/

(−6v4 − 3v4 cos(3v)+ 8v4 cos(2v)+ 2v4 cos(v)− 2v4 cos(4v)+ v4 cos(5v)
)
,

c1=−
(
6 cos(v)− 9 cos(2v)− 18v2 + 9 cos(6v)+ 10v sin(3v)+ 3v2 cos(7v)

+ 19v2 cos(2v)+ 3v2 cos(3v)+ 2v2 cos(4v)+ 24v sin(v)+ v2 cos(v)

+ 68v4 cos(v)+ 44v4 cos(2v)− 37v sin(2v)− 7v2 cos(5v)− 3v2 cos(6v)

+ 36v4 + 10v sin(5v)+ 12v4 cos(3v)+ 11v sin(6v)− 8v sin(7v)

− 10v sin(4v)− 6 cos(7v)
)/

(
6v4 + 3v4 cos(3v)− 8v4 cos(2v)− 2v4 cos(v)+ 2v4 cos(4v)− v4 cos(5v)

)
,

c2=
(−3+ 3 cos(8v)+ 3 cos(2v)+ 15v2 − 3 cos(6v)+ 20v sin(3v)− v2 cos(7v)

− 19v2 cos(2v)− 9v2 cos(3v)+ 2v2 cos(4v)+ 2v sin(v)+ 5v2 cos(v) (29)

+ 3v sin(8v)− 108v4 cos(v)+ 6 cos(3v)− 60v4 cos(2v)+ 9v sin(2v)

+ 5v2 cos(5v)+ 3v2 cos(6v)− v2 cos(8v)− 72v4 − 12v4 cos(4v)

− 12v sin(5v)− 36v4 cos(3v)− 7v sin(6v)+ 2v sin(7v)− 4v sin(4v)

− 6 cos(5v)
)/

(
6v4 − 3v4 cos(3v)+ 8v4 cos(2v)+ 2v4 cos(v)− 2v4 cos(4v)+ v4 cos(5v)

)
,

c3=
(−3+ 3 cos(8v)+ 6 cos(v)− 9 cos(2v)− 9v2 + 9 cos(6v)+ 52v sin(3v)

+ 2v2 cos(7v)+ 3v2 cos(2v)− 24v2 cos(3v)+ 10v2 cos(4v)+ 26v sin(v)

+ 18v2 cos(v)+ 3v sin(8v)− 64v4 cos(v)+ 12 cos(3v)− 52v4 cos(2v)

− 39v sin(2v)+ 4v2 cos(5v)− 3v2 cos(6v)− v2 cos(8v)− 24v4

− 4v4 cos(4v)− 12v sin(5v)− 12v4 cos(3v)+ 9v sin(6v)− 4v4 cos(5v)

− 6v sin(7v)− 20v sin(4v)− 6 cos(7v)− 12 cos(5v)
)/

(
6v4 + 3v4 cos(3v)− 8v4 cos(2v)− 2v4 cos(v)+ 2v4 cos(4v)− v4 cos(5v)

)
,

where v = wh.

Appendix D.

c0 = 22081

15120
− 8183

43200
v2 + 38261

7983360
v4 − 53454109

163459296000
v6 − 224519

9686476800
v8

− 7948002947

2667655710720000
v10 − 304389874157

851515702861824000
v12 + · · · ,

c1 =− 7337

15120
+ 8183

8640
v2 − 8517617

39916800
v4 + 121277771

6538371840
v6 − 64580539

62270208000
v8

+ 13296432923

533531142144000
v10 − 38809673941

22767799541760000
v12 + · · · ,
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c2 = 339

112
− 8183

4800
v2 + 2711669

4435200
v4 − 78584357

672672000
v6 + 1967211203

145297152000
v8 (30)

− 310087862587

296406190080000
v10 + 994742061737

17520899235840000
v12 + · · · ,

c3 =− 29

15120
+ 8183

8640
v2 − 16078709

39916800
v4 + 3223501717

32691859200
v6 − 5439466481

435891456000
v8

+ 546451320323

533531142144000
v10 − 17918689431103

327506039562240000
v12 + · · · .

Appendix E.

c0 =
(
−12 cos

(
11

2
v

)
+ 26v2 cos

(
11

2
v

)
+ 56v2 cos

(
9

2
v

)
+ 12 cos

(
5

2
v

)

+ 12 cos

(
7

2
v

)
− 12 cos

(
9

2
v

)
− 12v2 cos

(
3

2
v

)
− 6v3 sin

(
7

2
v

)

− 60v3 sin

(
5

2
v

)
− 24v3 sin

(
3

2
v

)
+ 12v3 sin

(
1

2
v

)
− 12v2 cos

(
1

2
v

)

− 86v2 cos

(
5

2
v

)
− 20v2 cos

(
7

2
v

)
+ 27v sin

(
7

2
v

)
+ 45v sin

(
5

2
v

)

+ 30v3 sin

(
9

2
v

)
+ 12v3 sin

(
11

2
v

)
− 27v sin

(
11

2
v

)
− 45v sin

(
9

2
v

))/
(

24v5 sin

(
3

2
v

)
− 3v5 sin

(
9

2
v

)
− 9v5 sin

(
7

2
v

)
+ 18v5 sin

(
1

2
v

))

c1 =−
(

24 cos

(
11

2
v

)
− 109v2 cos

(
11

2
v

)
− 57v2 cos

(
13

2
v

)
+ 2v2 cos

(
9

2
v

)

− 24 cos

(
5

2
v

)
+ 72v sin

(
13

2
v

)
+ 12 cos

(
7

2
v

)
− 36 cos

(
3

2
v

)
(31)

− 12 cos

(
9

2
v

)
+ 309v2 cos

(
3

2
v

)
− 144v sin

(
3

2
v

)
− 18v3 sin

(
13

2
v

)

+ 12v3 sin

(
7

2
v

)
+ 30v3 sin

(
5

2
v

)
+ 150v3 sin

(
3

2
v

)
+ 120v3 sin

(
1

2
v

)

+ 60v2 cos

(
1

2
v

)
+ 25v2 cos

(
5

2
v

)
+ 10v2 cos

(
7

2
v

)
+ 36 cos

(
13

2
v

)

+ 45v sin

(
7

2
v

)
− 45v sin

(
5

2
v

)
− 12v3 sin

(
9

2
v

)
− 42v3 sin

(
11

2
v

)

+ 99v sin

(
11

2
v

)
− 27v sin

(
9

2
v

))/
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(
−24v5 sin

(
3

2
v

)
+ 3v5 sin

(
9

2
v

)
+ 9v5 sin

(
7

2
v

)
− 18v5 sin

(
1

2
v

))
,

c2 =−
(

4v3 sin

(
15

2
v

)
− 12 cos

(
11

2
v

)
+ 17v2 cos

(
11

2
v

)
+ 17v2 cos

(
13

2
v

)

+ 76v2 cos

(
9

2
v

)
− 12 cos

(
15

2
v

)
+ 14v2 cos

(
15

2
v

)
+ 12 cos

(
5

2
v

)

− 15vsin

(
13

2
v

)
+ 24 cos

(
7

2
v

)
− 24 cos

(
9

2
v

)
+ 27v2 cos

(
3

2
v

)

− 15v sin

(
3

2
v

)
+ 6v3 sin

(
13

2
v

)
+ 12cos

(
1

2
v

)
− 66v3 sin

(
5

2
v

)

− 34v3 sin

(
3

2
v

)
+ 12v3 sin

(
1

2
v

)
− 21v sin

(
15

2
v

)
− 130v2 cos

(
1

2
v

)

+ 51v sin

(
1

2
v

)
− 149v2 cos

(
5

2
v

)
− 16v2 cos

(
7

2
v

)
+ 54v sin

(
7

2
v

)

+ 54v sin

(
5

2
v

)
+ 24v3 sin

(
9

2
v

)
+ 6v3 sin

(
11

2
v

)
− 18v sin

(
11

2
v

)

− 90v sin

(
9

2
v

))/
(
−8v5 sin

(
3

2
v

)
− 6v5 sin

(
1

2
v

)
+ 3v5 sin

(
7

2
v

)
+ v5 sin

(
9

2
v

))
,

c3 =
(

3v3 sin

(
15

2
v

)
+ 24 cos

(
11

2
v

)
− 3v3 sin

(
17

2
v

)
+ 12 cos

(
17

2
v

)

− 148v2 cos

(
11

2
v

)
− 46v2 cos

(
13

2
v

)
+ 132v2 cos

(
9

2
v

)
− 24 cos

(
15

2
v

)

+ 13v2 cos

(
15

2
v

)
− 24 cos

(
5

2
v

)
+ 81v sin

(
13

2
v

)
+ 72 cos

(
7

2
v

)

− 60 cos

(
3

2
v

)
+ 18v sin

(
17

2
v

)
− 72 cos

(
9

2
v

)
+ 634v2 cos

(
3

2
v

)

− 279v sin

(
3

2
v

)
− 12v3 sin

(
13

2
v

)
+ 12cos

(
1

2
v

)
+ 42v3 sin

(
7

2
v

)

− 72v3 sin

(
5

2
v

)
+ 108v3 sin

(
3

2
v

)
+ 162v3 sin

(
1

2
v

)
− 27v sin

(
15

2
v

)

− 86v2 cos

(
1

2
v

)
+ 171v sin

(
1

2
v

)
− 11v2 cos

(
17

2
v

)
− 272v2 cos

(
5

2
v

)

+ 24v2 cos

(
7

2
v

)
+ 60 cos

(
13

2
v

)
+ 198v sin

(
7

2
v

)
+ 18v sin

(
5

2
v

)
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+ 30v3 sin

(
9

2
v

)
− 48v3 sin

(
11

2
v

)
+ 162v sin

(
11

2
v

)
− 234v sin

(
9

2
v

))/
(

24v5 sin

(
3

2
v

)
− 3v5 sin

(
9

2
v

)
− 9v5 sin

(
7

2
v

)
+ 18v5 sin

(
1

2
v

))
,

where v = wh.

Appendix F.

c0 = 22081

15120
− 8183

32400
v2 + 163217

59875200
v4 − 18674219

20432412000
v6 − 847002619

7846046208000
v8

− 10634141009

666913927680000
v10 − 4881472343381

2128789257154560000
v12 + · · · ,

c1 =− 7337

15120
+ 8183

6480
v2 − 23499361

59875200
v4 + 126960761

4086482400
v6 − 2671623259

1120863744000
v8

− 489026521

19054683648000
v10 − 30694336017227

2128789257154560000
v12 + · · · ,

(32)
c2 = 339

112
− 8183

3600
v2 + 7724309

6652800
v4 − 257511533

756756000
v6 + 37885490177

871782912000
v8

− 96624716203

24700515840000
v10 + 13771078022381

78844046561280000
v12 + · · · ,

c3 =− 29

15120
+ 8183

6480
v2 − 46182637

59875200
v4 + 1267336361

4086482400
v6 − 816823794001

7846046208000
v8

+ 18857047381

1067062284288
v10 − 4406209046546399

2128789257154560000
v12 + · · · .
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